Makoto Kelp¹ Christian Chiu², Qindan Zhu³, and Loretta Mickley² AGU Fall Meeting 20231211

1. Stanford University, 2. Harvard University, 3. MIT

Uncovering spatiotemporal drivers of urban ozone in changing NO_x regimes: A data-driven case study of Los Angeles and Chicago

Through emission controls, Los Angeles has transitioned from a NO_x-saturated toward a NO_x-limited chemical regime in the 2010s

patterns are limited

Machine-learned data fusion datasets provide the most representative air pollution concentration fields today

Surface Monitor Data

Predictor Variables

Data Products: NO₂, PM_{2.5}, and Ozone

Predicted Daily Concentrations 1 km x 1 km grid cells

Di et al., 2019, 2022

Classic statistics agree with our understanding of LA: NO2 declining, ozone increasing

- Mean and standard deviations have same spatial patterns
- 2. NO₂ and PM_{2.5} concentrations decline over 2005-16
- 3. Ozone concentrations increase over 2005-16
- 4. Mean/std. dev. used to evaluate chemical regimes and policy controls

Los Angeles Metropolitan Statistical Area

PM_{2.5} trend 2005-16 ug/m³⁻¹ month⁻¹

isolate pollutant events.

Multi-resolution dynamic-mode decomposition (mrDMD) can extract dynamic modes at varying spatiotemporal scales, which can serve to

Data-driven urban air pollution networks

Long-term dynamic modes suggest an opposite relationship

DMD modes provide information about the structural changes in air pollution concentrations over time. Positive modes indicate growing air pollutant variability, while negative modes indicate decaying air pollutant variability.

Increasing Variability

Decreasing Variability

mrDMD suggests short-term pollution episodes drives long-term

San Gabriel Valley and the Inland Empire are increasing in OPE and more likely NO_x-saturated

Ozone/NO₂ Representative Mode

-Ozone/NO₂ can show information about ozone production efficiency (OPE) or NO_x-limited vs. NO_x-saturated regimes.

- LAX, downtown, near coast decreasing OPE

- San Gabriel Valley, Inland Empire increasing OPE

 Orange County increasing, but is NO_xlimited

Adding PM_{2.5} and Ozone modes can highlight joint patterns or behaviors in the data

-Summing modes can capture cooccurring high variability of both pollutants.

-San Gabriel Valley/Inland Empire are a target area for high concentrations and high variability.

2021 in Los Angeles: c.f. Pfannerstill et al., 2023, submitted

Takeaways

- -Los Angeles transitioning into a NO_x-limited regime, but some areas are more NO_x-limited than others
- -Classic statistics may be misleading -Short-term pollution episodes dominate
- long-term variability
- -San Gabriel Valley/Inland Empire are a target area for high concentrations and high variability

-ML datasets with mrDMD may be a promising method to investigate pollution dynamics without running chemical transport models (CTMs)

Next Steps: Incorporate temperature data, examine emissions over 2005-2016

Makoto Kelp

Website QR code

NO₂ variability is increasing and spatiotemporal patterns are changing

