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Application of machine learning to chemical
solvers

...........................................................................................................................................................................................................................

Chemical calculation is
expensive

Fully deterministic Error growth



Past ML chemical solver attempts have been
unsuccessful due to runaway error growth

CBM-Z box model: ozone
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Dimensionality: 77 transported gas-phase
250 times faster, neural network
[Kelp et al. 2018, ArXiv]

GEOS-Chem: surface Ozone

GEOS-Chem

Error

Dimensionality: 51 transported gas-phase
85% slower, random forest
[Keller and Evans 2019]



New model framework 1) compresses
dimensionality and 2) captures low-frequency
chemical modes during training

Mechanism: CBM-Z/MOSAIC Box model
101 species: 77 gas, 24 aerosol
4 meterological variables: T, P, RH, Solar angle
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Kelp et al. [JGR 2020]



New ML model able to prevent error
accumulation over time period of interest

Past

Framework:

Keller and Evans, 2019
Kelp et al. 2018 preprint

Current
Framework
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Kelp et al. [JGR 2020]




ML framework still achieves orders-of-
magnitude speedup and can run operations on
a GPU

~5hours | |CBM-Z/MOSAIC (1 CPU)

20 sec :l Neural Network (8 CPU) 860X
9 sec :l Neural Network (1 GPU) 1900x

0.1 1 10 100 1,000 10,000
Seconds required to integrate chemistry for 1 million grid cells

Kelp et al. [JGR 2020]



The ‘Super Fast’ chemical mechanism will allow us to better define
ML methods and understand limitations in a full 3-D global
modeling framework

- Global mechanism with ~15 species
[Brown-Steiner et al., 2018]
- Benchmarked in GEOS-Chem v12.0.0

- 4x5° resolution

Training Data:

1-hour chemical time step output
23 variables:

3 physical var: T, H20, air density
6 photolysis frequencies
14 gas-phase species

1 month dataset would contain:
lonxlatxlevxdaysxhours =
46x72x20x31x24 ->~49 million samples
Trained on JJA of 2016

Testing:
Online testing in GEOS-Chem v12.0.0
for July 2017




Offline 1h training leads to prediction of global
average (naive approach)

Beijing grid
—— GEOS-Chem
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Offline 24h recursive training unable to
dynamically account for operator splitting

Beijing grid

—— GEOS-Chem
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Offline 24h ML model re-trained online
corrects model toward GEOS-Chem

Beijing grid
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Direct online training of ML model offers
greatest promise

Beijing grid

—— GEOS-Chem

2501 —— Offline trained NN 24h

—— Offline retrained
Offline trained 1h
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Ozone (ppb)
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Beijing grid
—— GEOS-Chem \
Online trained 1h
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- No need to generate large offline data archives
- Incremental training allows us to:
- Train on representative realizations
- Avoid overfitting by training on future data
- Account for non-stationary distributions of data due to operator splitting



Error in simulating surface ozone in 30-day simulation

After 1 day After 5 days After 10 days After 30 days
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Error in simulating surface ozone in 30-day simulation

After 1 day After 5 days After 10 days After 30 days
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Next steps

-Quantify error for longer time scales (1 year, all 4 seasons)

-Achieve similar performance for all species in Super Fast
mechanism

-Apply to full GEOS-Chem mechanism

-Implement into GEOS-CF for short term forecasting and data
assimilation



