Investigating Health-Relevant Air Pollution Concentration Linkages Across Multiple Seasons During Indoor Cookstove Campaign in Rural India

Makoto M. Kelp^{1*}, Andrew P. Grieshop², Conor C.O. Reynolds³, Jill Baumgartner⁴, Grishma Jaine⁵, Karthik Sethuraman⁵, Julian D. Marshall¹

¹University of Washington; ²North Carolina State University; ³University of British Columbia; ³McGill University; ⁵Resource Optimization Initiative; *Now at Harvard University— Dept. of Earth and Planetary Sciences

Methods

- Cookstove randomized control trial (RCT) in rural India: households randomly assigned to receive ("intervention") or not receive ("controls") the intervention cookstove.
- Real-time measurement of CO, BC, and PM_{2.5}
- 24h-averaged, fixed window (05:00–09:00 and 18:30–21:00), and variable window (150% of a household's 02:00 background baseline) definitions of cooking employed.
- Two seasons: pre-intervention baseline (September 2, 2011– December 10, 2011; "S1"); a post-intervention follow-up (March 11, 2012–August 1, 2012; "S2").
- "Intervention" = replacing traditional open fire with a new hearth and two chulika stoves. "Mixed" = both intervention and traditional stoves used. "Intent to treat" = intervention plus mixed group.

Background and Motivation

- Combustion of solid fuel in traditional stoves affects human health and the environment [1]. The resulting household air
 pollution is associated with adverse health impacts in adults and children [2].
- Our study was CDM approved & conducted in a rural village in the Koppal district of northern Karnataka, a state with a population of ~1.2 million people that covers 7190 square kilometers.
- Approximately 35% of Koppal residents are day-wage laborers earning less than one dollar per day; an estimated 99% of Koppal households use traditional stoves (indoor, open fires) to cook food and heat bath water [3].

THAAAAAA T*****+∔∔∔+ 00:90 00:00 0 0 2:0 S2 Mixed S2 Intent to Treat S2 Followed Protocol S2 Control 000 800 600 400 200

Indoor concentrations of PM_{2.5} generally **peaked in the morning and evening around cooking events (shaded regions)**. Average concentrations during non-cooking hours for both seasons (S1: 58 and S2: 18 μg/m³) were relatively constant within that season (pooled coefficient of variability for S1 and S2: 47%).

Household (hh) eligibility and exclusion based on parallel assignment study design. **32 hh selected for real-time analysis.**

Seasonal and Diurnal Distribution of PM_{2.5}

Air-Exchange Rates

N = 49

10

N = 53

N = 102

Intervention cookstoves yielded **statistically significant increase in BC** concentrations (by 39 μ g/m3, p<0.05) and **BC/PM_{2.5}** (by 0.25, p<0.05) during cooking-relevant hours-of-day relative to controls. Median CO and PM_{2.5} concentrations decreased, though not statistically significant.

Conclusions

Text and figures in full can be found in

Median AER was 2.5 h⁻¹ (mean: 3.4 h⁻¹, IQR: 1.5–3.9 h⁻¹). Median AER was **52% higher in the evenings than the mornings** (3.2 vs. 2.1 h⁻¹, p < 0.003; IQR: 1.5–6.0 h⁻¹ vs. 1.4–3.3 h⁻¹). Differences between S1 and S2 were small and not statistically significant.

- The CDM-approved intervention stove improved some but not all aspects of air quality.
- During cooking-relevant hours-of-day, in intervention households relative to controls, median concentrations decreased for CO (by 1.5 ppm, p=0.28) and PM_{2.5} (by 148 µg/m³, p=0.46) but increased for BC (by 39 µg/m³, p<0.05) & for the ratio of BC/PM_{2.5} (by 0.25, p<0.05). We measured a mean AER of 3.4 h⁻¹ (median = 2.5; IQR
- = 1.5–3.9; range = 0.08–12.7 h⁻¹), which is consistent with literature.
- The smaller sample size real-time monitoring (n=32) may prevent establishing statistical significance that may otherwise be viable with a larger dataset of timeintegrated equipment.

Kelp, M.M., et al., Real-time indoor measurement of health and climaterelevant air pollution concentrations during a carbon-finance-approved cookstove intervention in rural India. Development Engineering, 2018. 3: p. 125-132.

References

[1] Venkataraman et al., 2005, doi: 10.1126/science. 1104359

[2] Dherani et al., 2008, doi: 10.2471/BLT.07.044529[3] Fair Climate Network, 2012, Baseline Information: Koppal Taluk

Acknowledgements

The authors thank Dr. Susan Cottrell for writing assistance, Matthew Bechle for data preprocessing and early guidance, and David Paolella for comments and discussion.