

¹Reed College— Dept. of Chemistry, Portland, Oregon; ²U.S. Environmental Protection Agency— National Exposure Research Laboratory, Research Triangle Park, North Carolina; ³Colorado State University— Dept. of Atmospheric Science, Fort Collins, Colorado; *Now at University of Washington— Dept. of Civil and Environmental Engineering Correspondence: kelm@uw.edu

Model Configuration and Evaluation

GEOS-Chem Global Simulations

OGEOS-Chem v10-01i **O**GEOS-5 Meteorology O4x5 resolution **O**2005 spinup/2006 output **O**MEGAN v2.1 Biogenic Emissions

Monoterpene Speciation and VBS Parameterizations

OThe monoterpene α -pinene (APIN) was removed from the bicyclic terpene tracer species (MTPA) and speciated with a VBS APIN-NO₃ yield of $zero^{[6][7]}$.

Figure 1: Updated GEOS-Chem SOA mechanistic pathway

Figure 2: *MEGAN global annual monoterpene emissions (Tg)* and relative percent contribution

Global Modeling of Secondary Organic Aerosol Production from Reaction of NO₃ Radical with Speciated Monoterpenes

Makoto M. Kelp^{1*}, Havala O.T. Pye², Emily V. Fischer³, Jared F. Brewer³, and Juliane L. Fry¹

OOn a global and regional scale, secondary organic aerosol (SOA) is known potentially to contribute to global cooling^[1] and cause deleterious effects on human health^[2]. **O** Historically, global modeling of SOA formation from monoterpenes has been based on a simplified lumped mechanism, which parameterizes all monoterpene-NO₃ reactions as β -pinene^{[3][4]}. **O** The resulting global spatial patterns and annual budgets of organic aerosol gave poor matches with observations^[5]. **O** Recent chamber studies reveal α -pinene reaction with NO₃ radical oxidant to have a much lower SOA yield than compared to the other bicyclic monoterpenes^{[6][7]}. **O** To assess how a lower α -pinene-NO₃ SOA-producing pathway affects global organic aerosol concentrations, the global 3-D chemical transport model GEOS-Chem was updated with a new volatility basis set (VBS) based aerosol parameterization where α -pinene was removed from the lumped parameterized terpenes tracer and speciated with unique chemistry.

Model Results: Base Case-Test Case

OMON BPIN OCIM LIMO MYRC CARE

0.9 **Figure 3**: Global absolute differences (base case – test case) of total SOA from monoterpenes in August (top) and January (bottom) Changes in SOA are relative to the base case model minus the α -pinene-NO₃ zeroed yield. Notice the largest differences occur in high VOC/SOA producing source regions such as the Congo forests and the Amazon. August is the greatest SOA-producing month due to increased VOC emissions and temperature.

Motivation

Figure 4: Simulated monthly average total OA (aerosol products of terpene, isoprene, light aromatics, and POG oxidation) and SOA from terpenes in the Congo Forest

OThe major finding of this work is that for high SOA producing source regions such as the Amazon and the Congo, there is a 3.5 μ g/m³ decrease in predicted SOA in the summer months. **O**The reduction in SOA concentrations due to updated chemistry leads to an annual difference of 2 Tg between the control and novel VBS mechanisms, a 10% change in terpene organic aerosol.

Future Work

OAnalyze aircraft and satellite observations for model-tomeasurement comparisons. OImplement greater degree of speciation for the bicyclic monoterpenes and the sesquiterpenes.

References

Acknowledgements

This study was supported in part by NOAA Climate Program Office's AC4 program, award #NA13OAR4310070. Special thanks to Prof. Jeff Pierce, Dr. Bonne Ford, Zitely Tzompa, Jack Kodros, and Matt Bishop of Colorado State University's Department of Atmospheric Science for model set up and valuable discussions. In addition, thanks to Dr. Christoph Keller and Bob Yantosca of the GEOS-Chem Modeling Group at Harvard University for troubleshooting the model. Furthermore, Hyungu Kang for poster comments and encouragement.

Conclusions

[1] Volkamer et al., 2006, doi: 10.1029/2006gl026899 [2] Baltensperger et al., 2008, doi: 10.1089/jamp.2007.0655 [3] Griffin et al., 1999a, doi: 10.1029/1998jd100049 [4] Pye et al., 2010, doi: 10.5194/acp-10-11261-2010 [5] Heald et al., 2011, doi: 10.5194/acp-11-12673-2011 [6] Fry et al., 2014, doi: 10.1021/es502204x [7] Nah et al., 2015, doi: 10.1021/acs.est.5b04594