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Model Configuration and Evaluation Motivation

: : O On a global and regional scale, secondary organic aerosol (SOA) is known potentially to contribute to global cooling!'l and cause deleterious effects on human healthl?l.
GEOS-Chem Global Simulations O Historically, global modeling of SOA formation from monoterpenes has been based on a simplified lumped mechanism, which parameterizes all monoterpene-NO; reactions as p-pinenel3li4l,
. O The resulting global spatial patterns and annual budgets of organic aerosol gave poor matches with observations/®l.
OGEOS-Chem v10-01i O Recent chamber studies reveal a-pinene reaction with NO, radical oxidant to have a much lower SOA yield than compared to the other bicyclic monoterpenest®l’l.
OGEOS-5 Meteorology O To assess how a lower a-pinene-NO, SOA-producing pathway affects global organic aerosol concentrations, the global 3-D chemical transport model GEOS-Chem was updated with a new
O4x5 resolution volatility basis set (VBS) based aerosol parameterization where a-pinene was removed from the lumped parameterized terpenes tracer and speciated with unique chemistry.
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OThe monoterpene a-pinene (APIN) was removed from the
bicyclic terpene tracer species (MTPA) and speciated with a
VBS APIN-NO; yield of zerol®ll’],
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Figure 4: Simulated monthly average total OA (aerosol products
of terpene, isoprene, light aromatics, and POG oxidation) and
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source regions such as the Amazon and the Congo, there is a
beta-pinene | limonene linaloo] 3.5 ug/m3 decrease in predicted SOA in the summer months.
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Figure 1: Updated GEOS-Chem SOA mechanistic pathway ~ l‘.’}! " ~. Olmplement greater degree of speciation for the bicyclic
9 B ~ monoterpenes and the sesquiterpenes.
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Figure 2: MEGAN global annual monoterpene emissions (Tg)
and relative percent contribution



